TARGET MATHEMATICS by:- AGYAT GUPTA

Page 1 of 3

Code No. Series AG-F6

- Please check that this question paper contains 4 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 29 questions.

General Instructions: -

- **1.** All questions are compulsory.
- 2. The question paper consists of 29 questions divided into three sections A, B and C. Section A contains 10 questions of 1 marks each, Section B is of 12 questions of 4 marks each and Section C is of 7 questions of 6 marks each.
- 3. Write the serial number of the question before attempting it.
- 4. If you wish to answer any question already answered, cancel the previous answer.
- 5. In questions where internal choices is provided. You must attempt only one choice.

Pre-Board Examination 2009 -10

Time: 3 hrs. M.M.: 100						
	CLASS – XII MATHEMATICS					
Section A						
Q.1	If the graph of $y = f(x)$ is given and the line parallel to <i>x</i> -axis cuts the curve at more than one point .Write the name of function .					
Q.2	The vectors $\vec{a} = 3\hat{i} + x\hat{j} - \hat{k} \otimes \vec{b} = 2\hat{i} + \hat{j} + y\hat{k}$ are mutually perpendicular. Given that					
	$ \vec{a} = \vec{b} $, find the values of x and y.					
Q.3	If A is a matrix of order $m \times n$ and C is a column of A, find order of R as a matrix.					
Q.4	Prove that: $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$.					
Q.5	If $A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, then find the value of x.					
Q.6	If f(x) is real function, then find $\int_{0}^{2a} \frac{f(x)}{f(x) + f(2a - x)} dx.$					
Q.7	Find c if Rolle's Theorem are verified by $f(x) = e^x(\sin x - \cos x)$ on $\begin{bmatrix} \frac{\pi}{4} & \frac{5\pi}{4} \end{bmatrix}$.					
Q.8	Let $f: R \to R$ be defined by $f(x) = x^2 - 3x + 1$, Find $f[f(x)]$.					
Q.9	Find x, y if the points (x, -1, 3), (3, y, 1) and (-1, 11, 9) are collinear.					
Q.10	Find the condition that the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ may be invertible .					
TMC/D/79/89 1 P.T.O.						
Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. :2337615: 4010685@, 92022217922630601(Q) Mobile : 9425109601:9907757815 (P): 9300618521:9425110860(Q):9993461523:9425772164						

PREMIER INSTITUTE for X, XI & XII.© publication of any part of this paper is strictly prohibited.. Visit us at : http://www.targetmathematic.com: Email:agvat99@gmail.com.

To remove this message, purchase the product at www.SolidDocuments.com

	TARGET MATHEMATICS by:- AGYAT GUPTA Page 2 of 3						
	Section B						
Q.11	Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$, where, S is the range of f , is invertible. Find the inverse of f .						
Q.12	Find the equation of the tangent to the curve $y = \sqrt{3x-2}$ which is parallel to the line $4x - 2y + 5 = 0$.						
Q.13	Using the properties of determinants, prove that $\begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix} = a^3.$						
Q.14	Evaluate : $\int_{-5}^{0} f(x) dx$, where $f(x) = x + x + 3 + x + 6 $.						
Q.15	Prove that $f(x) = \frac{e^{-1/x} - 1}{e^{1/x} + 1}$, does not exist at $x = o$.						
Q.16	$\frac{1}{e^{-5}}$ Prove that $f(x) = \frac{e^{-1/x} - 1}{e^{1/x} + 1}$, does not exist at $x = 0$. Solve the differential equation $\left[x\sin^2\left(\frac{y}{x}\right) - y\right]dx + xdy = 0$; $y = \frac{\pi}{4}$ when $x = 1$.						
Q.17	(I) Evaluate : $\int \frac{dx}{x(x^8+1)}$.(II) Evaluate : $\int \sec^3 x dx$.						
Q.18	In a school, there are 1000 students, out of which 430 are girls. It is known that out of 430, 10% of girls study in class XII. What is the probability that a student chosen randomly studies in class XII given that the chosen student is a girl ? Or Two balls are drawn at random from a bag containing 3 white, 3 red, 4 green and 4 black balls one by one without replacement. Find the probability that both the balls are different colors.						
Q.19	Using vectors, prove that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$. Or Using vectors prove that the altitudes of a triangle are concurrent.						
Q.20	If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \pi$, prove that $x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xy^2$. If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$, prove that $x^2 + y^2 + z^2 + 2xyz = 1$						
Q.21	Given that $\cos\left(\frac{x}{2}\right) \cdot \cos\left(\frac{x}{4}\right) \cos\left(\frac{x}{8}\right) \dots = \frac{\sin x}{x}$. Show that: $\frac{1}{2^2} \cdot \sec^2\left(\frac{x}{2}\right) + \frac{1}{2^4} \cdot \sec^2\left(\frac{x}{4}\right) + \frac{1}{2^8} \cdot \sec^2\left(\frac{x}{8}\right) + \dots = \csc^2 x - \frac{1}{x^2}$. Or If $x = \sin t$ and $y = \sin pt$, then prove that $(1 - x^2)y_2 - xy_1 + p^2y = 0$.						
Q.22	Find the equations of the bisector planes of the angles between the planes $3x - 2y + 6z + 8 = 0$ and $2x - y + 2z + 3 = 0$. Also point out the bisector of the obtuse angles between the given planes. Or Find the vector equation of the plane $\vec{r} = (1 + s - t)\hat{i} + (2 - s)\hat{j} + (3 - 2s + 2t)\hat{k}$ in the scalar product form.						
TMC/D/79/89 2 P.T.O. Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony							

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X , XI & XII .© publication of any part of this paper is strictly prohibited.. Visit us at : http://www.targetmathematic.com: Email:agvat99@gmail.com.

This document was created using

e

To remove this message, purchase the product at www.SolidDocuments.com

	TARGET MATHEMA	TICS by:-	AGYAT G	UPTA	Page 3 of 3			
	Section C							
Q.23	Find the product of matrices equations : $\frac{2}{4} + \frac{3}{4} + \frac{10}{4} = 4$; $\frac{4}{4} = -4$	$\frac{6}{6} + \frac{5}{2} = 1 \cdot \frac{6}{6} + \frac{5}{2}$	and $\begin{bmatrix} 110 & -1\\ 72 & \\ 9 & -\frac{20}{2} & = 2 \end{bmatrix}$					
Q.24	Colspan="2"> $x \ y \ z$ $x \ y \ z$ $x \ y \ z$ A manufacturer makes two type of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machine is given below.Type of ToysMachines							
	A	I 12	II 18	III 6	-			
	В	6	0	9	-			
	Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is Rs 7.50 and that on each toy of type B is Rs 5, show that 15 toys of type A and 30 toys of type B should be manufactured in a day to get maximum profit.							
Q.25	Evaluate: $\int_{0}^{\infty} \sqrt{\tan x} dx$.							
Q.26	Find the area of the region; $\{(x, y); x^2 + y^2 = 1 = x + y\}$. Or							
	Draw the rough sketch of the region enclosed between the circles $x^2 + y^2 = 9$ and							
	$(x-3)^2 + y^2 = 1$. Using integration, find the area of the enclosed region.							
Q.27	Two bag A and B contains 4 white and 3 black balls and 2 white and 2 black balls respectively. From bag A, two balls are drawn at random and then transferred to bag B. A ball is then drawn from bag B and is found to be a black ball. What is the probability that the transferred balls were 1 white and 1 black?							
	Or Assume that the chances of a patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga ?							
Q.28	Prove that the line of section of	the planes $2x - $	y + z = 4and 5z	x + 7y + 2z = 0	meets the plane			
	3x + 4y - 2z + 3 = 0 in a single	<u>_</u>		-				
Q.29	The sum of the surface areas of a rectangular parallelepiped with sides x , $2x$ and x / 3 and a sphere of radius r is given to be constant . Prove that sum of their volume is minimum if $x = 3r$. Also find the minimum value of the sum of the volumes .							
	X							

TMC/D/79/89

3

P.T.O.

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X, XI & XII.© publication of any part of this paper is strictly prohibited.. Visit us at : http://www.targetmathematic.com: Email:agvat99@gmail.com.

F

This document was created using

e

To remove this message, purchase the product at www.SolidDocuments.com